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INTERCOMPARISON OF THE FINITE DIFFERENCE AND NODAL DISCRETE ORDINATES

AND SURFACE FLUX TRANSPORT METHODS FOR A LWR POOL REACTOR BENCHMARK
PROBLEM IN X-Y GEOMETRY

R.D. O'Dell
University of California
Los Alamos National Laboratory,
Los Alamos, Mexico 87545, USA

J. Stepanek
Swiss Federal Institute for Reactor Research,
5303 Wuereniingen, Switzerland

and

M.R. Wagner
Kraftwerk Union AG
8520 Erlangen, Fed. Rep. of Germany

The aim of the present work is to compare and discuss the three of the
most advanced two dimensional transport methods, the finite differcence
anhd nodal discrete ordinates and surface flux method, incorporated

into the tronsport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU.

For intercomparison the cfacnvalue and the neutron flux distribution
are calculated using these codes in the LWR pool reactor benchmark
problem, Additionally the results are compared with some results ob-
tained by French collision probubility transport coden MARSYAS and
PRIDENT. Because the transport solution of thir benchmark problem irn
clone to its diffusion solution some results obtained by the finfte
eloment diffunion code FINELM and the finfte difference diffusion code

DIFF-2D are included,



INTERCOMPARISON OF THE FINITE DIFFERENCE AND NODAL DISCRETE ORDINATES

AND SURFACE FLUX TRANSPORT METHODS FOR A LWR POOL REACTOR BENCHMARK
PROBLEM IN X~Y GEOMETRY

INTRODUCTION

In spite of the great deal of progress made in recent years in transport
theory methods the performance of these is still far from being satisfactory.
Particularly objectionable are the long computing times encountered when

the number of variables, spatial meshes and energy groups becomes very large
in 2 and 3 dimensions.

The most widely used method is the discrete ordinates method (S theory).
This method is based on the solution of the integro-differentia? equation
using discrete angular integration, In 2 and 3 dimensions it also leads to
a simpler formalism than other methods.

However, its main disadvantaqge is the co-called ray effect.

In addition the use of the finite difference scheme in space with just [lat
or lincar flux approximation requires in many problems up to tens of
thousands of meshes for the adequate accuracy of the solution in two dimen-
sions.

In many problems especcially for large number of unknowns the inner iterative
schemes are often fnefficient and lead to a very large number of iterations
and therefore to high computational time,

In recent years a great deal of time and offort has been therefore devoted
to mitigating the ray effect and to accelerating the converqence of inner

iteration achemes by introducing the new powerful acceleration and  naroo-
menh rebalancing methods,

Different 8  nspatial differencing approximations have also been introduced,
‘The need for developing coarse-mesh transport theory methods which allow

one to dramatically decreane the number of ppatial meshen in e design,
fusjfon blanket and shiclding analyuis for configurations ceataining larpe
homogeneoun regions han lead to the development of difierent theorfos, Thene
aro generally baned on nodal methods or on the aurface flux transport method
which unon the general wder of Legendre polynomial  nerfen to approximate
the npatial an well an anqular [lux dintributionn,

The aim of the present paper (o to compare three of the mont advanced two-
dimennional transport methodr, the fintte difforence and nodal dlrecrete

ordinates and murface flux method, calculating the pame benchwark problem
and inventigating by thin way the etfficiency of different approaches, such



as surface flux approximations, boundary flux and volume spatial flux
apr oximations.

The three gbove mention: methods are incorporated into the finite differ-
ence SN code TWODANTI, t. nodal SN code TWOTRAN-NQDAL 2,3 , & nodal SN code
MULTIMEDIUM “ and the sur.nice flux codes SURCU %657, For the sake of com~
parison some results by Y. “Yederbel and Z. Stankovski (CEA, France) using
the French collision probat.lity codes MARSYAS ® and TRIDENT ° are also in-
cluded.

An LWR pool reactor benchmark problem '° with fission sources is used for
the celculations. This case is very difficult to calculate because the zones
are optically thick (large value of I, x dimension) and weakly connected. It
is therefore difficult to obtain the results with high accuracy. Additionslly
the spatial flux distribution varies rapidly so that a very large number of
meshes has to be used if the problem should be converged using the finite
difference scheme only. This benchmark problem is therefore suitable to

study the effectiveness of the methods which use a higher order of spatial
flux approximation, such as the nodal approach of expansion of the spatial
flux into Legendre polynomial series or approximating i* using the higher
order of Lagrange polynomials, for example.

In contrast to the above, the order of Sy or Py approximation of the sur-
. . Al
fuce fluxes 19 not very important.

Because the transport solution to this problem is close teo its diffusion
solution, the transport results arce also comparced with those obtained ucing
the finite element diffusion code FINEIM ' and the finite difference
diffusion code DIFF-2D (0bn) 17,

SENCHMARK PROBLER

e second part of the benehmark problem "LWE pool reactor' dofined by

Jo Btepnaek for the TAEA coordinnted resenreh program on "Peansport Lheory
and advanced reanctor calenlations™ " wno used for compariton in this prper,
Tt consists of two larege source zoner and two | arge aboortber wonce sur-
rounded by light wnler, Onc cHerpey proup, igotropte noutron seattrering, oand
vacuum boundnry conditions are considered. The nxinl buckling s wero.
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Neutron cross sections

Material Za sz Zt Lo Xsl
1 0.07 0.079 0.60 0.53 0.27
2 0.28 0.0 0.48 0.20 0.02
3 0.0 0.043 0.70 0.66 0.30
N 0.15 0.0 0.65 0.50 0.15
5 N.01 0.0 0.90 0.89 0.40
Normalization: Total production = 1 (n/sec).

Eigenvalue and average fluxes in the material zones are calculated.

DEVELOPMENT OF THE DIAMCND-DIFFERENCE EQUATIONS

The widelv-used diamond difference scheme (used in the diffusion synthetic
accelerat : TWODANT code at Los Alamos)! is readily developed by consider-
ing the i, mc:h cell to bve defined as the rectangle defined by

X S X SRy Yp 0¥ 2 Vg and with Ax = Xg T X Ay = Yp = Vg
ordinates form of the transport equation for this cell for energy group g
and direction m is

The discrete-

umawm’g(x,y)/ax + nmawm,c(x,y)/ay + ogwm’g(x,y) = Sm,g(x,y) (1)
Hereafter the subscript m and g will be omitted.
11 we dnteprate Eq. (1) over the 1,J,e cell we obtain

u(wﬂ - WL) Ay + n(wT - wB) Ax + b o Axhy = SnvAXAy ()

vhere wn is the average angulor flux over the right face of the cell, wl is
tite average rlux over the left face of the ceil, wT und WB arce the average
fluxes over the top and bottom cell faces, respectively, wl. i

i the average

sheular flux in the cell, and § is the cell-nverage source.,
(4 [

av
We now aunsume §oand nooare positive, without loss of generality, so that v,
1

and Y may be assumed known thng leaving the Lhrec unknowns ¢, wl, and wuv
')

to be determined. The remaining Lwo cquations {in addition to Eq. (2))
required for closure arce the "diamond-difference” relations
'l oy - ( 1)
R v v L

nnd



The solution procedure is to simply substitute Eqs. (3) and (L) into Eq. (2)
and then solve for wav' Then the outflow fluxes wR and wT are computed

from the diamond-difference relations. It is readily seen that the outflow
fluxes, when extrapolated using Eqs. (3) and (4), can be negative. When this
occurs the offending negative outflow flux is set to zero and Eq. (2) is
again solved (with that outflow flux explicitly set to zero) for Yoy This
procedure is called the "set-to-zero fixup". The use of fikups causes some
degree of uncertainty in the accuracy of the computed results, however. In
addition, flux fixups tend to interact rather unfavorably with iteration
acceleration schemes, that is, scceleration schemes are generally less
effective when many flux fixups are needed. To reduce the number of flux
fixups requires reducing the mesh cell sizes (increasing the number of

mesh cells), an option that increases both the computer storage requirements
and the execution time. In many multidimensional problems it is simply not
possible to refine the mesh sufficiently. The negative flux/flux fixup
problem with the diamond difference scheme is equivalent to saying that the
scheme is an insufficiently accurate spatial differencing scheme for many
multidimensional transport problems. This is seen in the table of results
for the benchmark problem analyzed in this paper using the diamend-differ-
ence code TWODANT. Even at the 120 x 120 mesh the problem is still not fully
converged to the "exact" k.pp and zone-averaged fluxes for the Sg quadrature
used.

Thus, even though diamond-difference codes such as TWOTRAN-II® and DOT-L !°
are still the most commonly used deterministic transport codes, there 1s a
great need for more production codes employing more accurate differencing
scheme without an undue increase in computational time or computer storage
requirements.

DEVELOFMENT OF THE LOS ALAMOS NODAL EQUATIONS

The Los Alamos transport nodal methods can be characterized by the soparate
angular flux expansions assumed on the edges of a node (cell) and over the
interior of the node. For example, a "constant-linear" mcthod refers to one
in which independent ronstant edge angular flux "expancions" are assumed
together with a linear flux expansion over the node interior. The nodal
method used for this paper is the "linear-linecar” method defined as method
LI4 in Ref. 3.

Consider the 1i,J node to be the rectangle defined by XS X S Xy ¥p 2V < ¥y

Wit} - x. = - I F oy 30 L= <o
and with Ax = Xp = Xp» Ay Yo T Ypr X (xL * )/2 and yJ (yT + yB)/
The discrete-ordinates ecquation for direction m and cnergy group g io

¢ + ¢
umawm g(x,y)/)x anWm

&

dy o ¥
p(x,y)/)y cg“m

L)

g(x,y) =5 F(x,y) . (%)

s o

Hereafter the subseripts m and g will be dropped.

We assume that the source within the node i linenr, that is,

(\
)/Ay ()

5 S 48 *o(x - x, vy % (y -
S5(x,y) = Sy X {x (1)/AX iy (y %



and that the source for a given iteration is determined using fluxes from
the previous iteration. It is further assumed, for this enalysis, that p > O,
n > 0 so that the fluxes on the node edges at Xy and ¥z are known.

We represent the angular flux along the top edge of the node by the linear
expansion:

XL<X<XR

= * -
y= YT
with similar expressions for the other node edges.

Nodal equations are geaerated by performing transverse integrations of (5)
over the node in the x- and y-directions. If we integrate (5) over {xL,xR]
there results an ordinary differential equation for ¥O(y) =

x
R

ryn \}'(x,y) dx

nd¥o(y)/dy + o¥°(y) = Sgv ¥ 8, * oy - yj)/Ay - (u/Ax)[‘i'(xR.y) - ‘l‘(xL,y)]

(8)

We can also multiply (5) through by (6/8x2)(x - xi) and x-integrate over

the node to gel an equation for the y-dependent, first flux momeunt YJ(y) =

*p

6/Ax2* J‘ (x - x].’) Y(x,y) da

L (9)

1
n avl(y)/ay + o¥i(y) = 5.t (Ou/ax)* {\P"(y) - O.DE(xH,J) + ‘I’(xL,y)]}
Similar cxpression for ¥O(x) and ¥!{x) car be,obtnined by incegrating in
the y-direction.

Exact solutions to (8) and (9) arec obtained ".nd cvaluated at y = Yoo
These are:

Y
W°(yT) = Vg = ¥y exp(-cy) + (L/n)* dy' cxp{-o (yT - y')/n)* (10)

Yn



Sgv * (2/8y)(y' - yj) . sy - (u/ax) [w(xR,y') - w(xL,y')]} (10)

and y
T
Wl(yT) = GT = 8y exp(-ey)+( 1/n)* § dy* exp{—o(yT - y')/n}*
)
(11)

35x + {6u/nx) [w°(y') = 0.5{¥(xp,y') + W(XL’Y')ﬂi '

Similar exact expressions for ¥O(x

n
<
5
[= 1
€

xR) = eR are also generated.

cAy/n and € F agAx/y.

R)
In these expressions we have defined e

For the linear-linear nodal method it is assumed that the inlerior flux
¥(x,¥), X; € X < Xpy ¥Yp <Y < ¥ is given by

Y(x,y) =y ¥ *2(x - x.)/6x + vy * 2(y - yj)/Ay . (12)

Equation (6) is used for computing the linear source distribution within the
cell.

For the seven unknowns WT 1] and 68_ we require seven

R? wav’ lpx' q)y’ e'I" R
equations. Three of these equations are conservation equations found by

taking the 1, (6!Ax2)* (x - xi), and (6/Ay2)(y - yj) moments of Eq. (5).

The remuining four equations are found by inserting the linear flux ex-
pansions directly into Equatlion:: (10) and (11) and their companion equations
for VO(xR) and Wl(xR) and analytically performing the integrations.

The manner in which these scven equations are solved requires careful treat-
ment t .+ ensure a proper soluticn when o is small or zero.

This nodal method was programmed into a special version of the TWOTRAN-II?
code at Los Alamos. No attempt was made to provide this nc 1 code with an
effective iteration acceleration scheme. Accordingly, the nodal computer
runs converged very slowly. Before the linear nodal method at Los Alanos
can achieve production code status, an effective iteration acceleration
must be devised and implemented., Work in Lhis remains to be performed.

Generally, the Los Alamos lincar nodal method described in this” paper and
in Reference 3, requires about 2.5 times as much computational time as the
diamond differcnce scheme per mesh cell calculation, Additionally, the
linear nodal method requires about twice as much computer storage as deew
a comparable diamond differcnce code. The lincar nodai method, however,
generally produces results of comparable accuracy to those from diamond-
differcncing but with far fewer mesh cells, especially if one is interested



in pointwise quantities. A net savings in both computer time and storage is
obtainable using the lineer-linear nodal scheme when compaied with the dia-
mond-difference scheme for the same accuracy.

NODAL DISCRETE CRDINATES METHOD AT KWU

The nodal discrete ordinates method * (NDOM) is & hybrid method for the
approximate solution of the two-dimensional transport equation in rectar su-
lar x,y geometry. The method combines certain features ~f the integral “rans-
port theory and the discrete ordinates method with ideas derived from the
nodal diffusion theory approach %1%, As in the latter, the primary

variables are the node average scalar fluxes and the surface averaged
partial currents J¥ at the node boundaries. To simplify the notation, the
group index g will® be omitted hereafter. The angular distribution of the
incoming and outgoing surface fluxes is described in terms of average half
range angular flux moments defined by

Av 1 27

+ 1

) (n>(us) vy, j. dv jun du f d¢u W(u,v,u,cbu), (13)
5 G o

vwhere u is the spatial direction normal to the node boundery at u=u _; p is
the direction cosine and ¢, is the azimuthal angle with respect to the
u-axis. According to (13) these angular flux moments are defined by formally
integrating over both the transverse spatial and angular dimensions (direc-

tion v and azimuthal angle ¢ ) of the node. The acutal nodal variables of
NDCM are the partial currents on the left (1) and right (r) node boundaries

U= X,y
Jt(uc) = ¢t(l)(u.) s s =1l,r , (1)
and the average half range u-moments (with n=l, ""nMax)
- ™ () )
= (u ) = .
0 () ¢y

Note, that from these variables the surfacc averaged scaler fluxes on the
node edges are determined as

I () J (u )
ou ) = ———— p —— S (16)
s +(1) (1)
u (us) u (us)

In the NDOM version as currently implemented in the nodal multigroup pro-
grom MULTIMEDIUM Myax is egual to 2, which corresponds to assuming a DP2

approximation for the angular distribution of the surface fluxes.



In analogy to the procedure in nodal diffusion thecry methods the basic
iterative step in solving the NDOM eguations is to compute, for a fixed set
of.in-currents and in-moments on all faces of a particular node, a new set
of corresponding out-currents and out-moments by solving & system of coupled
one-dimensional transverse integrated transport equations” . These auxili-
ary equations are derived by applying the operator

Av 2n
1
2nhAv

d
dv ¢u
[»] &)

to the two-dimensional transport equation with isotropic scattering. As a
result, a system of two one-dimensional slab type equations Is obtained

uéggi bl OtW(u,u) = o ¢(u) = Qlu) - L (wu) s ()

vith u=(x,y), for the "double" transverse integrated angular fluxes ¥(u,u).
Both equations (17) are coupled through the transverse leakage term

1.V(u,u). In the simplest version of NDOM “ the transverse leakage is assumed
to be isotropic and spatially constant. Hence, LV(u,u) is expressed in terms
of the partial currents in the trancverse direction v

LY (u,u) = —Al; [J*"(m) -3 V(av) + 3 (%) - J%)] . (18)

The discrete ordinate form of Eg. (17) is discretized spatially as in con-
ventional S_-codes, using the diamond differencing scheme for an equi-
distant spagiul mesh. These equations are sclved, for each energy group, bY
a direct inversion of the streaming-collision operator. This then obviates
the need for iterating on the scattering source and for storing the one-
dimensional group scurces from one global outer iteration to the next. As

a result, the same overall iteration strategy and the same methods of con-

vergence acceleration can be used as for nodal diffusion theory calculations',

The nodal discrete ordinates method has been implemented in the framework
of the nodal code MULTIMEDIUM by, essentially, adding a central su?r utine
and by assigning additional storage fields for the new variables pt'"/. In
this form MULTIMEDIUM is predominantly used for carrying out transport-
depletion calculations for the analysis of heterogeneous LWR fuel assemblies
15,16  Benchmark calculations!® for a number of PWR and BWR assenbly
problems have demonstrated the accuracy and computational efficiency of the
nodal discrete ordinates method For this type of application.

The results presented in this paper show that NDOM allows one also to solve
transport theory problems involving large homogeneous regions with reason-
able accuracy and short computing times. Another example is the ZPPR-TA
problem for which some results are given in reference 1(. From the results
listed in Table 2 for the EIR-3B problem one notes that the NDOM solutions
do not exactly converge to the asymptotic solution of the explicit two-—
dimensional Sy codes TWUDANT or TWOTRAN-NODAL. There are several reasons
tor this behavior. One is the fu-lL thnt a double Gauss quadreture has been

used in the one-dimensional nodal Sy calculations. However, it is believed



that the discrepancy is mainly a consequence of the simplifying assumption
of isotropic transverse leakage, Eq. (18). For the present problem, as well
as for many other problems studied, the resulting error is not large. There-
fore, it was decided to accept this error, for the time being, and to put
the emphasis on consolidating the isotrcpic leakage version of NDOM in
MULTIMEDIUM for routine use in design oriented LWR applications. On the
other .and, preliminary investigations indicate that it is pooaible to
correct for this error by introducing suitable angular {(and spatial) approxi-
mations of the transverse leakage term LV(u,u) in Eq.(i7). The develcpment
of such an improved and stable algerithm remains an objective of future
work.

SURFACE FLUX MULTIPLE PN METHOD

The general surface flux method is used to solve tne integral neutron trans-
port equation in X-Y geometry. The spatial distribution of neutron

flux and sources is represented by a Legendre polynomial expansion while
zonal spherical harmonics, Y?, orthogonal in angular zones, are used to
approximate the incoming and outgoing surface fluxes in I, angular zones at
the interfaces between space intervals.

This method is incorporated into the code SURCU® . SURCU is alsc written

for one-dimensional geometries, plane, spherical, and cylindrical, consider-
ing the double P, approximation of the angular fluxes at the mesh boundaries.
In X-Y geometry it subdivides space into rectangular meshes and solves the
integral equation in each mesh. Meshes are then connected to each other
through incoming surface currents on the mesh boundaries. The angular space
st the mesh boundaries is first suvbdivided into four angular guadrants,

each of which is then further divided into I, angular zones In each angular
zone zonal spherical harmonics (i.e. angular functions orthogons' in a zone)
are used to develop the angular distribution of surface fluxes. The spatial
distribution of the neutron flux and of the sources is represented by a
Legendre polynomial expansion.

In the presert work all calculations were performed with I, = 1L, i.e. the
angular space at the mesh boundaries was subdivided into four quadrants
only.

Coasider a gecmetrical configuration consisting of a number of homogeneous
rectangular meshes. Then the integral transport equation for the neutron
flux ¢(r,Q) for energy group g ar r within a single mesh (i,j) takes the
form

0
~
L~
|
©
~—
~
el

o(1.q) = A (pt )y S e 1e
(r,Q) ds'~(r',Q) e Q(rB,ﬂ) (19)

0

where ¢(r,R), q(r,q) and ¢{r ,5) are nueular neutron flux, total angular
volume source and angular neu'ron boundary flux, respectively, & is the
total macroscopic cross section, the direction 9 is defined by the axial
and azimuthal angles 8 and ¢, respectively, ;B is a point at the surface of



the mesh (i,j), and r' is a point on the line connecting r and ;B'

In the above formula and hereafter the subscript g denoting the energy group
g will be omitted. As usval, one now assumes that +he angular dependence
of the flux ¢, the total volume source q, and the given volume source S can
be expended into spherical hLarmonics:

°(r Q) £ Min(m,1) °Emk(;)
o)) Z 2k E z (e ld, (7)o (20)
S(r ) ] L=0 m=0 snmk(E)

for 0<6¢m and 0<¢<2n. Owing to the axial symmetry of fluxes and sources in
X-Y geometry only each spherical harmonics appear in Lq. (20), 2+m = even.
The angular volume source moments q are defined by

(r) = (r) + ¥ (r) , (01)

Yo mx 52 amk
where I is the &-th component of the macroscopiec scattering cross scotion
and the given volum. source moments Slmk include the contributions fron
other energy groups.

On each side of mesh (i,)) one now subdivides the angular spece formed by
the flight directions into four quadrants and each guudrant into 1, zonc:.

L P

waadrant 4 < div Quundrant 1

LX)

Quadrant. 3 Qunedrand

Then the boundary angular flux is expanded in ench zone into no series of
ronnl spherienl harmonice,: Ylnk(“‘¢ U.-@ )

g Min(m,1)

o TV o s
"( no"!d‘) EZ, o Yﬂmk(()'(l'()‘a“.'.ll)("illlk(‘H) ’ (-- )

Pe() g =0 ke()



for %+m even, 0g6gT7, ¢n_1565¢n, and -¢Znsus¢zn. The angle a is measured from
the symmetry axis of the angular zone. ¢, is equal to (¢n-¢n_l)/2, where

%, end ¢n-l are boundary anglec of the n'th zone starting at the x-axis with
n=0 (see Fig. on the previous page). N is the order of the PN approximation.
2+m is again choosen to be even because the angular flux is an even function
of 8 in X-Y gecometry.

The boundary multiple P

flux moments ¢ ere given by the equatiun

N Lk

¢

an n

Xno= oy o ol z r 2
¢2mk(r ) da {d6sing Yzmk(e’"’o'¢zn)¢(r3’e’¢) . (23)

- 0
¢le

The zonal spherical hermonics Y* wre defined and their calculational method
is described in Ref. 6.  Their orthogonality property is

n o,

1 2 yvé
da d0sind YL (o,a,oz.¢z).2 (e,u,oz,¢z) -

mk 'm'k!

-4 )
e

¢ couod 8
¢, con0, 8 8 m? Ohn

= ’ Dl
(7241 (i)

where 8 defines the wonal subdivicon of the angular half cpnce in the wi-
v,
muthal divection. For X-Y geometry 0 i choocen to cqual O,
g
In the dependence on quadrant and angular zone the angle a is related to

the anegle ¢ used to express the anpular depondence of the volume flux and
cource by the exprensions:

- - ]
b ~¢  +u 11 W)
noen
dn~-¢ +¢ - W
¢n ¢zn a bt oM
+h -+ o
" ¢»“ ¢?‘“ a FAayWa
- o+ - oy
i (:)n djzn“ . _— < B g
¢ = > for gundrants o= N (. 4)
— — (‘
LN N,
;i -— + * ;) {“;‘
" ¢n d"mx “ N
I X I - 0
T ¢'n ¢?.n a ARRUA
n o~ + + Nl
¢xx ¢zxx(i_ SRR

where B,5,W and N denoten Lhe enst, nouth, west and north mesh eide,



The spatial distributions of the angular fiux and source moments inside of
mesh (i,)) are now approximated by Legendre polynomial series:

- K K uv
¢£mk(r) 1 2 ®EJ
T = jod I uv . ‘
9y (1) E (~u+l)Pu(u) E (2v+l)Pv( ) Qay, , (26)
T - = UV
s2 (r) p=0 0 Sz

where kK, = Max(0,M-(g+m)/2) , K, = Max(0,M=-(2+m)/2-u)

2

and M is the order of the spatial flux aud source approximation. The

. uv v Hv .
spat nts S \ 2
patial momen ®Rmk’ qlmk and qlmk are defined by
{ ®U\) -:
fmk ] FIALY
WV 4 = .
Qpmk =5 S. du Pu(u) dv Pv(v) qzmk(r) ‘ . (27)
. “\' . -
o -1 -1 S
‘mk )ka(r)
\ . , . 1
The coordinates u and v are defined by x = xj__1 +';(Xi‘xi_l)(u+1) ’
and y =y + %(y.-y J{v+1l), where x and y arce the Cartesian coordinntoes.

MR SN IS

The spuiinl dependence of the boundary anpular fluxes (dofined by kg, (22))
en o the mesh boundaries is similarly approximated by Legendre polynominl

Herien:

({'»in K% Ginp

Lmv Lk )
m - () P‘ (W) mk Y , (1)
. 1 .

(ij Ninm

Lk peE 0 \ ¥

und

Fin K Finv

» 3 §

fmk Y mk

A y‘ SRR N CED T S .

®Win v Winv

2k ve() £k

where K{ e Mux (O, K=(f+m) /) |, and ¥ oin the ocder of the spatinl boundnry

flux approximntion. The ppatinl moments nee defined by

¢Si ¢Hi
?
fmk - { A V,(w) mk ’ ()
Q‘Ni ) ' (’Nin
fmk < "Tmk

and



\ R 1 Eiv

2mk 1 Lmk
! —_ 1] 1
“’Wi T2 w' P (v') Sy ’
Lmk -1 Lmk
. . 1
The coordinates w and w' are defined by Xp = %y 4 ¥ E(Xi_xi—l)(w+l) ,

= Ly - '
and yB = yj_l + Q(yj yj"l)(w +1) ,

A1l computations with SURCU, FINELM and DIFF-2D (2DB) were perfermed at EIR
on the CDC 6400 a mackine which is ten to fourteen times slower than tho
CDC 7600. The times for a CDC 7600 were estimated from those for a CDC 6LoC
by dividing by ten in order to give a conservative estimate.

The SURCU calculations &are suymmarized in Table 3. For all computations, the
angular quadrants were not subdivided into anguler zones (I =1). This
approximation will be referrcd to as *the quadruple QPN.
Although the present theory is fully incorporated into the code SURCU, it
has up to now only been tested for four angular guadrants, ie. for I =1,
The effrcviveness of the method for a greater number of angular intefvels
(1Z »1) will be shown in future publicutions.

In Tatle 3, (N, K, M) indicate N th order surface fluX approximation,

Kth order spatial Legendre polynomial surface flux approximation along
mesh boundaries and MLh order spatianl Legendre approximations for the fiux
in the mech,

Determination of the averape flux is the mont difficult part of the problem.
The flux has its highest values in zone 1 where almost all fissions arc
concentrated, On the other hand zone i, the sccond of the fission zoncg jhan
very low flux leveis which, al least locally, at times can be negative for
very coarse meshes and high order approximations. The order of the SN and
QP approximation is not very impoertant and cven low degroec approximuation:s:
leod to good results. However, the effeet of the spatial flux approxima-
tion iu very pronounced. It may be noted from Table 3 that the QP npproxi-
mation leads to poer results and the converged answer io far from the truc
valucys, Hovwever, ulready o QP, approximation leads to good results. With
increasing degree of the Legendre polynomiul for the spatinl distribution
of the flux the benchmark problem can be converged with fower unknowii.
This implies smaller demands on core memory and computationnl time for
couverging the problem,

In GURCYU the user has the option of choosing the degree of the Legendre
polynomial approximation in order to solve the problem most effectively.
If the problem is materinlwise Loo heterogenuour a high depree of poly-
nomiul leads to expensive caleulations and the user is adviced to use the
lincar approximation, M=1, which corrcoponds to lifferencing ns use  in
TWODANT, TWOTRAN-11 or DOT 3.% and k,

As in well known the fiat flux approximation (Men) in very inefficient
nnd chould be avoided, Best results are obtained when the order of spatind
approximation within the mesh and on the boundary arce identicnl (M=K),



CONCLUSIONS

The poor convergence of the finite difference schemes in TWODANT and
DIFF-2D to the "exact" solution and the inability to converge even by using
a very fine mesh shows the need to develop more accurate schemes, using
higher oder polynomials over coarse meshes, thus dramatically reducing the
number of unknowns reguired. This reduces the demands on the computer
storage and the computational time for a given convergence.
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The convergence study for various M and K is to be found in Ref.T .

Generally if an itervtive scheme is not well balanced and properly accelerated
the number of inner iterations increases very rapiaiy with increasing order
of spatial flux approximation and increasing number of meshes.

For example, for DOT 3.5 (see Refs. 5 and 6), the problem could be converged
only tor & 4xL mesh and a linear spatial flux approximation.For an 8x8 and
higher number of meshes,the inner iterations could rot be converged even
after a large number of iterations. The DOT 3.5 results published in Ref.8
were later found to be not sufficiently converged.

As mentioned before the diffusion and the transport solutions of this bench-
mark probtlem are very closc.

In order to compare the effectiveness of higher order pclynomial approxi-
mations of the spatial flux as against the usual spatial differencing
scheme and also draw a comparisca between different polynomial approxima-
tions, such as nodal in TWOTRAN-NODAL or MULTIMEDIUM, Legendre polynomial
in SUKCU, two diffusion codes were used.

The firsty,FINEIM is a 293-dimencion finite element diffusion code which
subdivides the spatial region into trianpgles and rectangles. The flux
within an element is approximated Ly Lagrangilan polynomiunls,

The second  is DIFF-2D, a twe dimensionnd Tinite difference diffusion code,
FINFELM and DIFF-2D results are summerized in Tables b and 9 and in Fig.o .

Tt is wticenble that with o tinite difference scheme as used in PIFE-0D the
"exnel" soluticon cannot be oLtained even with o GhxGh mesh net. A DIFF-0D
solution wity 128x128 meshes requires o memory larger  than hOOK octal and
could not be performed on our ChC computer,

In contrast, howevery FINFIM produres noconvergoed ancwer, Compnring Lhe
Tower approximations in FINKIM Lo DIFF-0D, one sees that FINELM resul tn
nre better and require less computing time. Alco, higher degrecs of
approximation in FINEIM lTead to better results and generally to shorter
compututional times Lhan lower approximntions,

FINEIM delivers a good result using o lixdo mesh and o higher order approxi-
mation in a very short computational time, Computations were performed

with polynomial approximations up to degree four for rectanglen od vp Lo
degree seven for triangles, Trinnglens anunlly offer o jenn accurnte result
than rectangles because they introduce a assymrmetry into the rectangular
X~Y geometry. The results with triangular eloments have beon Introduced for
comparinson with rectanpglen, AL the present time, approximationt with rect-
nngles are restricted Lo degrees up Lo four. However, higher ordern will

be introduced in Lhe upring 1ot 3,

Compnring Lagranginn Nodal and Legendre Polynomind npproximntions of the
game order, it may be neen that convergence s beat for Legendyre poly-
nominln,
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Tarle i. _aZ Pool Reactcr, Elzenvelue, TWODANT and TWOTRAN-NODAL

AT

Tntal

CPU Time per Mesh

X.=ter c? Avarage Fluxes (x 1372 keff CPU Tinme apd Iteration
Ccde Meshes Zome I Zcre 2 Zore 3 Zore -4 Zone 5 (sec) (sec * 103)
< £x3 I8.7%3 .1333 7.1537 2.3722 5.9982 0.98277 33 1.2
. 1Ex1€ 1K.E43 5.1322 £.IL322 G.3139 0.8405  1.0024k 43 0.9
. 32x32 16.852 2.223% 2.0383 0.2373 0.7998 1.00758 46 1.0
> G8xus I£.535 £.i743 5.C36G 0.2952 C.7931 1.0C837 79a 1.3
A E~xbi 1£.835 S.lgkk 2.50363 C.2944 9.7909 1.00858 100_ 1.2
5 £2xA2 1%.253 Z.1243 .23463 0.20u2 0.7898 1.0087k 170a 1.3
s 122x129 1£.561 J.1242 0.0367 €.2939 0.7888 1.008866 Lo 1.2
T N Ix3 1£.5€6 .14 0.0181  0.3597  0.9372 0.98662 276: 2.6
w C ltx¢ 1£.26C €.13¢) 0.0z27 0.3097 0.8151 1.00L13 29k 2.6
S - 3zx32 1€.352 0.1249 0.0323% 0.2952 0.7910 1.00841 h9ob 2.5
T A L5xl3 1€.2€2 5.1242 0.0355 0.2941 0.7389 1.0188C 1060b 2.5
= L fexf- 1£.5€é¢2 c.1251 9.0362 0.2938 0.7883 1.00689 1760 2.6
N
a. J2C-T£27 <ize estirated from CRAY-1 execution time

F——_~— YT
P DO DY B

%c iteraticn acceieratior, very slow convergence
L]

corvergence = 1x1C

TWOTRAN-NOTAD ecnvergenze = 1x1CTD



Tetle -,

Nedal Zisc

reta Jriinates Method 4 (NDCM), Code MULTIMEDIUM

Yu=zer c? Vezroid hverage Fluxes {x1073) Total CPU CPU Time per Mesh and
Yesres Agrroxizaticz Zoze 1 Zonme 2 Lone 2 Zone b Zcne 5 eff Time {sec) Iteration [sec*103)
zx3 oM, N83f{zZ) 1€.222 £.1131  5.CB91  5.2868  0.7704 1.01262 3.3 2.6

IExCE NS3(12) 1£.8i5  0.1215 0.6592  £.2901  0.7811 1.010ZC 7.8 1.7

2hxZs NS3{3)  16.553 £.1232  G.0LLE  G.2927  ©.7859 1.00936 11.0 1.5

izx:z %33 £} 1f.538  C.1233  C.03EB  0.2%3€  0.7882 1.00898 18.6 1.1

~ixal NS30L)  16.833 C.12% 2.0343 0.20L6  ©.7893 1.00870 36.6 0.9

Zext- ¥S=/Lt 1€.882 2.12s5 C.0326  0.2348 C.7897 1.00862 67.17 1.0

Zaxia WM, Mo5° 1€.363  ¢.127C 9.c27h €.3005  0.8019 1.00675  32.8 0.4

Jauss guad-eture used i 1-3
s

T_ex, iscuroric ransverse leakage
NS_<j: 1-3 33 calculatiozs with k
Y2 @ nsdal extassior methed 14 (3

2.3.137

cr the node edges

iiscrete ordinate calculaticns
approxi=ation
spatial intervals
iffusion theory}, D =

1/ (3Etr) and

\1
]

tr



Tatle 3. LWR Pool Reactor, SURCU calculations

Numter of Average Fluxes (x 10_3) K Total CPU
Mesnes N K M Zonel Zone 2 Zone 3 Zone 4 Zone 5 eff  Time (sec)
Lxb 1€.Lc3 0.5210 0.8624 1.0367 1.3320 O0.774%21 0.2

Ax3 9 - 0 1€.510 0.LB6k 0.6761 0.9736 1.4367 0.80459 0.6
16x16 Y 16.718  0.3k58  5.2935  0.6984  1.2922 0.87820 2.7
32x32 16.81% 0.2132 0.1075% 0.4382 0.9994  0.94773 8.1

Lxi 16.433 0.5218 0.8160 1.0390 1.3308  0.77Lh1 0.3

3x8 16.532 0.L827 0.6354 0.9703 1.4346 0.80600 1.3
“Ex1¢ bd 0 0 16.728 0.3389 0.2750 0.6913 1.2882 0.38088 4.6
32x32 16.813 c.7212 0.1101 C.4603 1.06L0 0.94803 13.5
ELxch 16.8L5 0...21 0.0601 0.3575 0.9067 0.98476 L46.3

4 x4 16.433 0.5218 0.8160 1.0290 1.3308 0.7Thh1 G.5
Ex3 5 ] o 16.532 0.4827 0.6355 0.9703 1.4347  0.80600 2.0
1€x1€ 16.728 0.3388 0.2757 0.6913 1.2882 0.88089 5.5
32x32 16.837 0.2210 _ 0.111%1 0.h662  1.06k0 0.94799 23.1
Lxl 16.L33 0.5218 0.8160 1.0399 1.3308 O.7T7kkl 0.7

Ex5 - o 0 16.532 0.4827 0.6355 0.9703 1.4347 0.80600 2.8
1€x15 3 16.728  0.3388  0.2757 0.6913  1.2882 0.88089 7.1
3A2x32 16.817 C.221% 0.1111 0.4662 1.06L0  0.94798 31.0

Lxb 16.946 0.3291 -0.12€9 0.6662 1.8768 0.88906 0.5

Ex8 16.948 U.1569 -0.0130 0.3455 0.9108 0.9912k 1.7
1€x:i%8 3 1 1 17.830 0.1159 -C.0035 0.2700 0.7820 1.01702 9.2
Azx3E2 1¢.866 39.1233 0.0222 0.24%C3 0.6965  1.02501 L4 .4
Baxzh 1€.865 G.0976 0.0231 0.2:272 0.6532  .03156 _151.2
Lxi 16.932 0.3342  -0.0999 0.63815 1.8523  0.88557 0.6
8x8 16.93k 0.1672 -0.1037 0.372€ 0.9543  0.98259 3.5
16x16 1 1 i 16.871 0.1323 0.0119 0.3062 v.8126 1,00460 15.4
32332 16.858 C.1247 0.0351 0.26952 1,012  1.00845 72.0
taxts 1£.858 0.1241 0.9367 0.29k41 0.7890 1.00862 20i.3




Tanie 3{cor:.). LAR Pool Reactor, SURCU Calculations

Nimter cf Average Fluxes (x 10-3) K Total CPU
Mesres N ¥ A Zor.e 1 Zone 2 Zone3 Zone 4 Zone 5 eff Time (sec)
Lxd 1£.932 0.3342  -0.3999 0.6815 1.8523  0.88557 1.1
&x3 2 . , 16.534 0.1672 -0.1033 0.3725 0.9544  €.98259 4.8
16x16 15.871 0.1303 v.0126  0.3062 0.8138 .00480 21.8
zexlz 16.838 0.12L6 0 1362  0.2951 9.7911 1.00848 59.3
LXe 16.932 0.3342 -0.0999 0.6815 1.8523  0.88557 1.5
9x2 3 . 1 16.53k 0.1672 -0.1033 0.3725 c.954h  0.98259 5.9
1ex16 16.871 J3.1303 0.0125 0.3062 a.£138 1.00480 29.6
1232 1€.858 C.12ko C.0362  0.2951 11 1.00848 72.6
i 16. 69 0.1457 -0.1678 0.3282 ~ 0.98851 0.3
ax3 - 5 5 16.071 0.1126 0.0125 0.2707 + 1.01072 3.4
1€x15 ? 16.861 0.1101 0.0307 0.26ki « 91 1.01575 18.1
32%32 ic.9€3 C. 1061 0.0275 0.2512 0.7099 1.02200 91.1
X~ 16.959 J.1057 =0.1500  0.3616 0.3598 0.98858 1.9
2x? AT e G.YETY G.013 0,3004 0.797TY  1.00687 8.0
lexi6 1 P 2 1€.85 G.1243 0.0353  0.29kLk 0.7894 1.00871 37.1
EES S 16.858 G.1241 0.0365 0.2y 0.7890 1.00882  130.1
CeXCm 1.853 0.12L0 0.03¢6  0.2940 C.7889 1.00888 303.1
L 16.353 0.1657 -C.15C1 G.3615 0.8598 0.98859 L.
Exz 1£.872 C.1275 0.0105 0.3CC3 0.7977  1.00689 15.8
lex1s z 2 p 1£.558 0.1243 0.0356  0.2943 0.7852  1.008T7h4 64.8
3Zx3Z 16.858 5.12k1 0.0370 0.2939 0.7886 1.00887 1.49.2
GCaxbo 16.855 0. 1250 0,037 0.2938 0.7683  1.00890 391.2
“xk 16.959 0.1657T =-0.1501 0.3615 0.8598  0.98859 6.6
8x3 16.872 0.1275 0.0105  0.3003 0.7977 1.006B9 21.3
1€x1€E 3 2 e 16.628 G.1243 0.0356 00,2943 0.7892 1.00874 78.9
12x3z 16.858 C.1241 0.C37C  0.2939 c.7886 1.00887 195.3

gt 1r..85 3.12L0 0.0372  0.2937 0.7882 1.00890 s561.1




Table 4. LWR Pool Reactor, FINELM and DIFF~2D Diffusion Calculations

~ode Tumder of . Average Fluxes (x 1073) K Total CPU
Veshesg . Zore 1 Zone 2 Zone ? Zone L Zone 5 eff Time (sec)
LyxX 16.917 0.4619 -0.0726 1.0518 2,6762 .78158 0.3
Bx3 ° 16.865 0.1852 0.0231 0.4336 1.1359 .96203 0.5
16x16 1 16.866 0.1586 3.0222 0.3726 0.9439 .56299 1.5
32x32 16.861 0.1500 0.0300 0.3517 0.8960 .98947 7.6
EhxEl 16.859  0.1472  0.0339  0.3453  0.8820 .99151 52.2!
T lxk 16.860  0.1564  0.0318  0.3653  0.9329 .$332% 0.5
5 Bx8 5 16.864 0.1508 0.0255 0.3540 0.8961 .98892 1.6
T 16x16 16.860  0.1474  0.0326  0.3452  0.8810 .99151 8.2
= 32x32 16.859  0.1463  0.0352  ©.3432  0.8775 .99217 57.22
X Lzh 16.672  0.1539  0.0110  0.3620  0.B765 .98867 1.4
= Bx8 3 16.860 0.1473 0.0326 0.3h51 0.8812 .99152 F.O3
= 15x16 16.858 0.1%62 0.0353 0.3431 0.87T4 .99220 34.5
Lxk 16.858 0.1468 C.0368 0.3L42 0.8931 .9910k 2.3
&x8 L 16.859 0.1463 0.0351 C 3432 0.8777 .9921L 15.0
16x16 16.858 0.1k61 0.035€ 0.3%30 0.8770 .99226 75.6°
Yxl 18.165 0.0486 0.0385 0.114s 0.3352 1.07753 0.5
£ 8x8 17.498 0.0893 0.0896 0.2090 0.591T 1.03965 0.9
J 16x16 17.039 0.1206 0.0821 0 2837 0.7598 1.01221 2.5
% 32x32 1 16.830 0.136L 0.0546 0.3215 0.8342 .99896 9.0
B glhxdh 16.757 0.1k425 0.0L1L 0.3350 0.8601 .9941T 35.4

VM-mears the order of the spatial flux approximation

1 2-x 2y dissectors

2 2-x ly dissector

3 3-x dissectors

Diffusion calculations made with D =1/(3L )and 2 =L -1 ./3
tr tr t sl



Table 5. LWR Pool Reactor, Eigenvalue, FINELM Calculation *

Average Fluxes (x 10-3) K Total CPU
M Zone 1 Zone 2 Zcne 3 Zone U4 Zone 5 eff Time (sec)
1 16.572 0.L7L4L 0.5620 0.81L8 2.4167T J.82703 0.3
2 17.340 0.1911 -0.8kL95 0.4369 1.0346 0.96508 0.5
o 3 16.831 0.1551 0.0865 0.3625 0.8958 0.98765 1.2
2 b 16.868 0.14Tk 0.018L 0.3h56 0.8878 0.99109 2.4
& 5  16.857 0.1470  0.0375  0.3440  0.877T1  0.9919% 5.8
'g 6 16.857 0.1462  0.0350  0.3431  O0.87TT  0.99219 1.7
7 16.858 0.1L461 0.0354 0.3L430 0.8770 0.99225 39.7
s 1 16.917 0.4619 -0.0726 1.0518 3.67€2 .78158 0.3
- 2 16.860 0.150k4 0.0318 0.3653 0.9329 .98326 0.5
g 3 16.872 0.1539 0.0110 0.3620 0.8765 .98867 1.1
fé L 16.858 0.1468 0.0368 0.3kk2 0.89321 .9910b 2.3
o

M -~ denotes the spatial flux approximation

*  LxLk spatial flux mesh

Diffusion calculations made with D =1/(3%. )and £ =% ~ 7Y% ./3
tr tr t sl



1'02'7

Keff

1.01

1.00

‘exact’

estimated /
solution-{—
099227 | =" —

0.99 +

0.98

FIRELM{ 1)

DIFF-2D(2D1)

() meuns crder of sputial
flux aprroxination

FLALIM(L)

FINEILM() FINEILMOT)

4

- T LE LI L T

| T T J1
6 8 12 16 24 X 48 64 B0 120 128

Member of meshes in one dipection -

yipnre 2.0 Eigenvalue as Fanetion of Nurber of Meshes and Fluax

Approximation for LWK Pool Reactor, Diffusion Caleutations

made with D = 1/(3%, ) and § =" =% /3



1.02

kef{

MULTIMEDL T 0

1.01 A
estimate
‘exact'
solution
1.0089l

1.00+

0.99

O' 98 g T L S S e EEEES R R S 1

4 © 8 12 16 24 32 48 64 B0 120 128

R N A e YR PRSIV Y et
P Yo bimenvadae e Fonor o0 ey LA ok
Arvreoadinat s oot v U b oy Trnn et i



